A Fast Apparent Horizon Finder for 3-D Cartesian Grids in Numerical Relativity Jonathan Thornburg (AEI Golm) ## **Motivation:** gravitational waves \Rightarrow binary BH coalescence \Rightarrow numerical relativity ⇒ want to **find apparent horizons** (BH surfaces) **at each time step** of a numerical evolution existing AH finders are very slow (minutes) \Rightarrow want a faster AH finder ## Main Ideas: - assume AH is a Strahlkörper ("star-shaped region"), parameterize by r = h(angle) for some single-valued $h: S^2 \to \Re^+$ - AH equation becomes **elliptic PDE** for h on S^2 $\Theta(h, \partial_u h, \partial_{uv} h; g_{ij}, K_{ij}, \partial_k g_{ij}) = 0$ - finite difference in angle on S^2 ($N_{\rm ang}$ angular grid points) - \bullet multiple grid patches to avoid z axis singularities - solve by **Newton's method** in $N_{\rm ang}$ dimensions - use "symbolic differentiation" to compute Jacobian matrix - interpolate g_{ij} and K_{ij} to AH surface points, **compute** $\partial_k g_{ij}$ at AH surface points as part of (Hermite) interpolation ## **Results:** - very fast: finds AHs in a few seconds - Cactus thorn AHFINDERDIRECT - code will be freely available (GNU GPL) starting in summer 2003